OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

MODULE 2

CHAPTER 2 - PROCESS
SCHEDULING

Prepared By Mr. EBIN PM, AP, IESCE 56

* The objective of multiprogramming is to have some process
running at all times, in order to maximize CPU utilization.

* In a uniprocessor system, only one process may run at a time; any
other processes must wait until the CPU is free. With
multiprogramming, we try to use this time productively.

* Several processes are kept in memory at one time. When one
process has to wait, the operating system takes the CPU away from
that process and gives the CPU to another process. This pattern
continues.

* CPU scheduling is the process of determining which process will
actually run when there are multiple runnable processes.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 57

Prepared By Mr. EBIN PM, AP, IESCE 1

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

* For attaining the objectives of multi programming, there must be
required proper CPU scheduling.

* Process execution consists of a cycle of CPU execution and 1/O
wait. Processes alternate between these two states.

* Process execution begins with a CPU burst. That is followed by an
|/O burst, then another CPU burst, then another I/O burst, and so
on.

* Eventually, the last CPU burst will end with a system request to
terminate execution.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 58

**CPU Scheduler

* Whenever the CPU becomes idle, the operating system must select
one of the processes in the ready queue to be executed. The
selection process is carried out by the short-term scheduler (or
CPU scheduler).

* The scheduler selects from among the processes in memory that
are ready to execute, and allocates the CPU to one of them.

* A ready queue may be implemented as a FIFO queue, a priority
gueue, a tree, or simply an unordered linked list.

* All the processes in the ready queue are lined up waiting for a
chance to run on the CPU. The records in the queues are generally
process control blocks (PCBs) of the processes.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 59

Prepared By Mr. EBIN PM, AP, IESCE 2

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

» CPU scheduling decisions may take place under the following four
circumstances:

1. When a process switches from the running state to the waiting
state (1/O request)

2. When a process switches from the running state to the ready
state (when an interrupt occurs)

3. When a process switches from the waiting state to the ready state
(for example, completion of 1/0)

4. When a process terminates

* In circumstances 1 and 4, CPU is in idle state. So if a process is
available in ready queue, the process must be selected for the
execution.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE

*In 2 and 3, CPU is in working state, which means that CPU is not
free.
* When the scheduling take place only under circumstances 1 and 4,

we say the scheduling is non-preemptive; otherwise the
scheduling scheme is preemptive.

* Under non-preemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it releases
the CPU either by terminating or by switching to the waiting state.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE

Prepared By Mr. EBIN PM, AP, IESCE 3

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

“*Non-preemptive scheduling: Once the CPU has been allocated to
a process, the process keeps the CPU until its termination or its
transition to the blocked state. This means that once CPU is
allocated to a process, this process can use the CPU for its own
execution till it willingly surrenders or leave the CPU.

“*Preemptive scheduling: Here, even if the CPU has been allocated
to a certain process, it can be snatched from this process any time
either due to time constraint or due to priority reasons. It implies
that if a process with a higher priority becomes ready for its
execution, the process which is currently using the CPU will be
forced to give up the CPU so that higher priority job has run fast.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 62

¢ Preemptive scheduling problems:

* Preemptive scheduling is costly as compared to non-preemptive
scheduling. Consider the case of two processes sharing data. One
may be in the midst of updating the data when it is preempted and
the second process is run. The second process may try to read the
data, which are currently in an inconsistent state.

* Preemption also has an effect on the design of the operating-
system kernel. During the processing of a system call, the kernel
may be busy with an activity on behalf of a process. Such activities
may involve changing important kernel data (for instance, I/O
qgueues). If scheduling is done in kernel level, it modifies the
important codes of kernel. So preemption in kernel must be
avoided.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 63

Prepared By Mr. EBIN PM, AP, IESCE 4

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

* Another component involved in the CPU scheduling function is the
dispatcher.

* The dispatcher is the module that gives control of the CPU to the
process selected by the short-term scheduler. This function
involves:

v'Switching context: Switching of CPU from one process to another.

v'Switching to user mode: When the system is in kernel mode,

dispatcher switches the kernel mode into user mode and vice
versa.

v/ Jumping to the proper location in the user program to restart that
program

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 64

* The dispatcher should be as fast as possible, given that it is invoked
during every process switch.

**Dispatcher latency

* The time it takes for the dispatcher to stop one process and start
another process execution is known as the dispatch latency.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 65

Prepared By Mr. EBIN PM, AP, IESCE 5

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

= CPU utilization: We want to keep the CPU as busy as possible. CPU
utilization may range from to 100 percent.

=" Throughput: It is the number of processes completed per time unit
(No. of process completed /second). For long processes, this rate
may be 1 process per hour; for short transactions, throughput
might be 1 process per second.

* Turnaround time: The interval from the time of submission of a
process to the time of completion is the turnaround time.
Turnaround time is the sum of the periods spent waiting to get into
memory, waiting in the ready queue, executing on the CPU, and
doing 1/0.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 66

= Waiting time: Waiting time is the sum of the periods spent waiting
in the ready queue.

= Response time: it is the time from the submission of a request
until the first response is produced.

»We want to
* Maximize CPU utilization and throughput
* Minimize turnaround time, waiting time, and response time.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 67

Prepared By Mr. EBIN PM, AP, IESCE 6

http://www.youtube.com/c/EDULINEFORCSE

OPERATING SYSTEMS
STUDENTS

SCHEDULING ALGORITHMS

1. First-Come, First-Served Scheduling (FCFS)

* It is the simplest of all the scheduling algorithms. Key concept of
this algorithm is —allocate the CPU in the order in which the
processes arrive. It assumes that ready queue is managed as FIFO
(First in first out).This algorithm is non-preemptive.

* Consider the following set of processes that arrive at time 0, with
the length of the CPU burst given in milliseconds:

Process Burst Time
Py 24
P, 3
P 3
Prepared By Mr.EBIN PM, AP, IESCE EPULINE 68

* If the processes arrive in the order P1, P2, P3, and are served in
FCFS order, we get the result shown in the following Gantt chart,
which is a bar chart that illustrates a particular schedule, including
the start and finish times of each of the participating processes:

Process Burst Time

P‘I Pz P3 Pl 24
Py 3
0 24 27 30 P 3

* The waiting time is 0 milliseconds for process P1, 24 milliseconds
for process P2, and 27 milliseconds for process P3.

* Thus, the average waiting time is (0 + 24 + 27)/3 = 17 milliseconds.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 69

Prepared By Mr. EBIN PM, AP, IESCE

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

* If the processes arrive in the order P2, P3, P1 the results will be as
shown in the following Gantt chart

Process Burst Time

Po Pg P4 Pl 24
P, 3
0 3 6 30 P 3

* The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds.

* This reduction is substantial. Thus, the average waiting time under
an FCFS policy is generally not minimal and may vary substantially
if the processes’ CPU burst times vary greatly.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 70

2. Shortest-Job-First Scheduling (SJF)

* The key concept of this algorithm is: —CPU is allocated to the
process with least CPU burst time.

* Amongst the processes in the ready queue, CPU is always assigned
to the process with the least CPU burst requirement.

* If there are two processes with the CPU burst, the one which
arrived first, will be taken up first by the CPU.

* This algorithm can be either preemptive or non-preemptive.

* Preemptive SJF scheduling is sometimes called Shortest-
Remaining-Time-First (SRTF) scheduling.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 7

Prepared By Mr. EBIN PM, AP, IESCE 8

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

*SJF is an optimal algorithm, as it gives the minimum average
waiting time.

ssExample

Process Burst Time
Py 6
P, 8
Py 7
Py 3

* Using SJF scheduling, we would schedule these processes
according to the following Gantt chart:

P, P4 Ps P

0 3 9 16 24

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 72

* The waiting time is 3 milliseconds for process P1, 16 milliseconds
for process P2, 9 milliseconds for process P3, and 0 milliseconds for
process P4.

* The average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds.
s»Shortest-Remaining-Time-First (SRTF)

Consider the following four processes, with the length of the CPU
burst given in milliseconds:

Process Arrival Time Burst Time
P, 0 8 P Py P Py Py
Py 1 4
Py ’ 9 0 1 5 10 17 26
Py 3 5
Prepared By Mr.EBIN PM, AP, I[ESCE EDULINE 73

Prepared By Mr. EBIN PM, AP, IESCE 9

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

* Process P1 is started at time O, since it is the only process in the
queue.

* Process P2 arrives at time 1. The remaining time for process P1 (7
milliseconds) is larger than the time required by process P2 (4
milliseconds), so process Pl is preempted, and process P2 is
scheduled.

* The average waiting time for this example is [(10 - 1) + (1 - 1) + (17
-2)+(5-3)]/4 = 26/4 = 6.5 milliseconds.

* Non-preemptive SJF scheduling would result in an average waiting
time of 7.75 milliseconds.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 74

3. Priority Scheduling
* The CPU is allocated to the process with the highest priority.
* Equal-priority processes are scheduled in FCFS order.

* Consider the following set of processes, assumed to have arrived at
time 0 in the order P1, P2, - - -, P5, with the length of the CPU burst
given in milliseconds:

Process Burst Time Priority
P 10 3
P 1 1
Ps 2 4
Py 1 5
Ps 5 2

0 1 6 16 18 19

* The average waiting time is 8.2 milliseconds.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 75

Prepared By Mr. EBIN PM, AP, IESCE 10

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

* Priorities can be assigned in two ways:
s*Internal assignment:

* It uses some measurable quantity or quantities to compute the
priority of a process.

* For example, time limits, memory requirements, the number of
open files, and the ratio of average 1/O burst to average CPU burst
have been used in computing priorities.

s External Assignment:

* It is set by criteria that are external to the operating system, such
as the importance of the process, the type and amount of funds
being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 76

* Priority scheduling can be either preemptive or non-preemptive.

* A preemptive priority-scheduling algorithm will preempt the CPU if
the priority of the newly arrived process is higher than the priority
of the currently running process.

* A major problem with priority-scheduling algorithms is indefinite
blocking (or starvation) - higher-priority processes can prevent a
low-priority process from ever getting the CPU.

* A solution to the problem of indefinite blockage of low-priority
processes is aging. When a process is waiting for a long time, the
OS gradually increasing the priority of processes that wait in the
system for a long time, and taken it for execution.

* Starvation is avoided by aging.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 77

Prepared By Mr. EBIN PM, AP, IESCE 11

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

4. Round-Robin Scheduling

* The round-robin (RR) scheduling algorithm is designed especially
for time- sharing systems for getting high responsiveness.

* It is similar to FCFS scheduling, but preemption is added to switch
between processes.

* A small unit of time, called a time quantum (or time slice), is
defined. The ready queue is treated as a circular queue.

* To implement RR scheduling, we keep the ready queue as a FIFO
gueue of processes. New processes are added to the tail of the
ready queue. The CPU scheduler picks the first process from the
ready queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE

* The process may have a CPU burst of less than 1 time quantum. In
this case, the process itself will release the CPU voluntarily. The
scheduler will then proceed to the next process in the ready queue.

* If the CPU burst of the currently running process is longer than 1
time quantum, the timer will go off and will cause an interrupt to
the operating system.

* A context switch will be executed, and the process will be put at
the tail of the ready queue. The CPU scheduler will then select the
next process in the ready queue.

* The RR scheduling algorithm is preemptive.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE

Prepared By Mr. EBIN PM, AP, IESCE 12

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Eg: Consider the following set of processes that arrive at time 0, with
the length of the CPU burst given in milliseconds.

Process Burst Time
P 24
P> 3
P 3
* time quantum of 4 milliseconds
P, P, | P, P, P, P, P, P,
0 4 7 10 14 18 22 26 30
Prepared By Mr.EBIN PM, AP, I[ESCE EDULINE 80

* Let’s calculate the average waiting time for this schedule.

* P1 waits for 6 milliseconds (10 - 4)

* P2 waits for 4 milliseconds

* P3 waits for 7 milliseconds.

* Thus, the average waiting time is 17/3 = 5.66 milliseconds.

* The performance of the RR algorithm depends heavily on the size
of the time quantum.

* If the time quantum is very large (infinite), the RR policy is the
same as the FCFS policy.

 If the time quantum is very small (say 1 microsecond), the RR
approach is called processor sharing

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 81

Prepared By Mr. EBIN PM, AP, IESCE 13

OPERATING SYSTEMS

http://www.youtube.com/c/EDULINEFORCSE

STUDENTS

Figure: Showing how a smaller time quantum increases context

switches.

process time = 10 quantum context
switches
12 0
0
6 1
0
1 9
g 1 2 3
Prepared By Mr.EBIN PM, AP, I[ESCE EDULINE 82

* If the quantum is 12 time units, the process finishes in less than 1
time quantum, with no overhead.

* |If the quantum is 6 time units, however, the process requires 2
guanta, resulting in 1 context switch. If the time quantum is 1 time
unit, then 9 context switches will occur, slowing the execution of
the process accordingly.

* If the context-switch time is approximately 10 percent of the time
guantum, then about 10 percent of the CPU time will be spent in
context switch.

* Turnaround time also depends on the size of the time quantum.

* When time quantum increases, the turnaround time increases and
context switching decreases.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 83
Prepared By Mr. EBIN PM, AP, IESCE 14

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

5. Multilevel Queue Scheduling

* Processes are easily classified into different groups. Foreground
and background processes.

* Foreground (or interactive) processes are directly interact with
users. In background (or batch) processes, no user interaction is
occurred.

* Foreground processes have high priority, but interactive processes
have high responsiveness.

* A multilevel queue-scheduling algorithm partitions the ready
queue into several separate queues.

Prepared By Mr.EBIN PM, AP, IESCE EPULTINE 84
highest priority
— system processes —
— interactive processes _
| interactive editing processes —
— batch processes e
— student processes)
lowest priority
Figure: Multilevel queue scheduling
Prepared By Mr.EBIN PM, AP, I[ESCE EDULINE 85

Prepared By Mr. EBIN PM, AP, IESCE 15

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

* Here ready queue is divided in to 5 queues. Each one is priority
queue. If a process comes, the nature of that process is
determined, and assigns it to the queue.

* If a process is assigned to a particular queue, that process cannot
move in to another queue. That is a fixed priority is given to the
incoming process.

* Key concept of this algorithm is —Multi level queue scheduling was
created for situations in which processes are easily classified in to
different groups

* Each queue has its own scheduling algorithm. For example, the
foreground queue might be scheduled by an RR algorithm, while
the background queue is scheduled by an FCFS algorithm.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 86

* Here starvation problem may occur.
* For avoiding starvation, time slicing principle is used.

* Each queue has given a particular time quantum, and the times
guantum is again sliced and distribute it to the processes reside in
that queue.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 87

Prepared By Mr. EBIN PM, AP, IESCE 16

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

6. Multilevel Feedback Queue Scheduling

*In multi level queue scheduling, processes are permanently
assigned to a queue on entry to the system. Processes do not move
from one queue to the other, since processes do not change their
foreground or background nature.

* For avoiding starvation Multilevel feedback queue scheduling,
allows a process to move between queues.

*The idea is to separate processes with different CPU-burst
characteristics.

* If a process uses too much CPU time, it will be moved to a lower-
priority queue. This scheme leaves 1/O-bound and interactive
processes in the higher-priority queues.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 88

* Similarly, a process that waits too long in a lower- priority queue
may be moved to a higher-priority queue. This form of aging
prevents starvation.

il =] I
—_— quantum = 8
- |
quantum = 16
-
> FCFS)
_

Figure: Multilevel feedback queues

Prepared By Mr.EBIN PM, AP, IESCE EPULINE 89

Prepared By Mr. EBIN PM, AP, IESCE 17

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

* The processes are classifies on the basis of CPU burst time.

* Highest priority is given to the 1/O bound processes and interactive
processes.

* The incoming processes are entered in QO. In QO, each process has
same priority.

* The first process in QO is taken and allocates CPU for execution.
After completing 8 milliseconds, the process is preempted and it is
added to the end of Q1.

» After completing one turn in QO, the processes are taken from Q1.
After completing 16 time quantum, next go to FCFS.

* Last performs FCFS.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE

7. Multiple-Processor Scheduling

* Load balancing is possible in multiple processor system. In multiple
processors scheduling, two cases arises.

v'Each processor has its own ready queue.
v'A common ready queue is available.
* In the first case, the load balancing concept does not occur.

* Two types of multiprocessors are asymmetric and symmetric
multiprocessors. Load sharing is only possible in symmetric multi-
processor.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE

Prepared By Mr. EBIN PM, AP, IESCE 18

OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

¢ Processor Affinity

* consider what happens if the process migrates to another
processor.

* The contents of cache memory must be invalidated for the first
processor, and the cache for the second processor must be
repopulated.

* Because of the high cost of invalidating and repopulating caches,
most SMP systems try to avoid migration of processes from one
processor to another and instead attempt to keep a process
running on the same processor.

* This is known as processor affinity—that is, a process has an
affinity for the processor on which it is currently running.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE

»Two types of processor affinities are:

= Soft: It is not a strict one. The process can be moved into another
processor on a critical situation.

= Hard: It is very strict. Here a particular process must be executed in a
particular processor.

+»» Load balancing

* Load balancing must be done when separate ready queues are
implemented. Two types of load balancing are:

= Push migration: Here, a dedicated process is check the CPU periodically.
If the CPU is in a waiting state, the checking process takes two or more
processes from a queue that have more processes, and push them in to
the waiting CPU’s ready queue.

= Pull migration: Here, the idle processor takes processes from a busy
CPU.

Prepared By Mr.EBIN PM, AP, IESCE EPULINE

Prepared By Mr. EBIN PM, AP, IESCE 19

